skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zimmerman Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationEcological systems are complex. Representing heterogeneous knowledge about ecological systems is a pervasive challenge because data are generated from many subdisciplines, exist in disparate sources, and only capture a subset of interactions underpinning system dynamics. Knowledge graphs (KGs) have been successfully applied to organize heterogeneous data and to predict new linkages in complex systems. Though not previously applied broadly in ecology, KGs have much to offer in an era when system dynamics are responding to rapid changes across multiple scales. ResultsWe developed a KG to demonstrate the method’s utility for ecological problems focused on highly pathogenic avian influenza (HPAI), a highly transmissible virus with a broad host range, wide geographic distribution, and rapid evolution with pandemic potential. We describe the development of a graph to include data related to HPAI including pathogen–host associations, species distributions, and population demographics, using a semantic ontology that defines relationships within and between datasets. We use the graph to perform a set of proof-of-concept analyses validating the method and identifying patterns of HPAI ecology. We underscore the generalizable value of KGs to ecology including ability to reveal previously known relationships and testable hypotheses in support of a deeper mechanistic understanding of ecological systems. Availability and implementationThe data and code are available under the MIT License on GitHub at https://github.com/cghss-data-lab/uga-pipp. 
    more » « less
  2. In this work we present a process and a tool to apply formal methods in Internet of Things (IoT) applications using the Unified Modeling Language (UML). As there are no best practices to develop secured IoT systems, we have developed a plug-in tool that integrates a framework to validate UML software models and we present the design of a location-based IoT application as a use case for the validation tool. 
    more » « less